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INTRODUCTION METHODOLOGY

Breast cancer (BC) Study population

It is the most common type of cancer, with more than 2.2 million cases in 2020. It accounted for 24% of all cancers diagnosed in
women. Around 685 thousand women died as a result of this disease (1)
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Women screened in the breast unit of the Clinica Colombia, in Bogota, 2021

Mammography density
classification:
* Lowrisk (LR): < 25%
* Moderate risk (MR): 26-50%
* High risk (HR) : > 50%

Take anthropometric measurements
and clinical variables
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Quality control of
metabolomic analyses

Figure 1. Midlateral obliqgue mammographic views
depicting the 4 BI-RADS density categories:

(A) Almost entirely fat (BI-RADS density 1)

(B) Scattered fibroglandular densities (BI-RADS
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OBJECTIVE

To explore the serum metabolic determinants of mammographic density as a risk factor for breast cancer, in women
screened at a reference hospital in Bogotad, in the year 2021

To determine the differences between
the metabolic profiles, the groups
under study and select the statistically
significant metabolites, analysis was
carried out univariate and multivariate
unsupervised and supervised statistics.

Biological
interpretation
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RESULTS
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CONCLUSIONS

1. The significant differentiating metabolites of the risk groups are mainly involved in the pentose phosphate pathway, biosynthesis of phenylalanine, tyrosine and tryptophan, previously reported in
the literature.

2. Finding a relationship between the different metabolic profiles with the risk classification by mammographic density will make it possible to open other more specific investigations in the field of
metabolomics, considering the identification of a plasmatic marker that will improve the efficacy of the tests currently used test for risk detection and screening of this disease in Colombia and the
world.
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