dianas 10 (1) de-la-Asunción-Nadal etal 2021 Destrucción “on-the-fly” de biofilms bacterianos empleando micromotores de dicalcogenuros de metales de transición impulsados por luz visible.

SECUAH 2021 > de-la-Asunción-Nadal etal 2021

dianas | Vol 10 No 1 | marzo 2021 | e202103c03

Destrucción “on-the-fly” de biofilms bacterianos empleando micromotores de dicalcogenuros de metales de transición impulsados por luz visible.

1. Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Alcalá de Henares, Madrid, Spain.  2. Chemical Research Institute “Andrés M. del Río”, Alcalá de Henares, Madrid, Spain. 

a. victor.asuncion@uah.es  b. j.bujalance@uah.es 

VI Congreso de Señalización Celular, SECUAH 2021.
29 de marzo a 30 de abril, 2021. Universidad de Alcalá. Alcalá de Henares, Madrid. España.

Resumen

Las bacterias tienen una gran capacidad para adherirse a superficies húmedas y desarrollar en ellas colonias. Estas son capaces de sintetizar matrices proteicas de sustancias poliméricas extracelulares (EPS), formadas principalmente por polisacáridos. Estas matrices facilitan su adhesión, tanto a las superficies, como entre ellas mismas, además de servir como capa protectora, dificultando su eliminación. Este tipo de organización bacteriana es muy común, se denomina 𝘣𝘪𝘰𝘧𝘪𝘭𝘮 y fue descrito por primera vez por 𝘡𝘰𝘣𝘦𝘭𝘭 & 𝘈𝘯𝘥𝘦𝘳𝘴𝘰𝘯 (1936). 1

Los 𝘣𝘪𝘰𝘧𝘪𝘭𝘮𝘴 o biopelículas bacterianas se encuentran tanto en superficies de materiales artificiales creados por el ser humano, como en la propia naturaleza.2 La aparición de 𝘣𝘪𝘰𝘧𝘪𝘭𝘮𝘴 de bacterias multirresistentes a antibióticos en materiales quirúrgicos o en la industria alimentaria tiene consecuencias directas en el ser humano, causando la propagación de un gran número de enfermedades y grandes pérdidas económicas anuales.3-4 El objetivo de este estudio es la eliminación de 𝘣𝘪𝘰𝘧𝘪𝘭𝘮𝘴 bacterianos, usando como modelo a la especie 𝘌𝘴𝘤𝘩𝘦𝘳𝘪𝘤𝘩𝘪𝘢 𝘤𝘰𝘭𝘪. Para ello se aprovecharán las propiedades fotocatalíticas de los dicalcogenuros de metales de transición (TMD), que son capaces de generar especies reactivas de oxígeno (ROS).

Esta aplicación se realizará, además, aprovechando las capacidades termoforéticas de estos materiales, ya que en presencia de luz visible son capaces de producir un calentamiento localizado que se traduce en movimiento. Este movimiento, permite la generación homogénea de radicales y otras especies reactivas en la zona tratada, mejorando la capacidad bactericida del material. Estos micromotores son además capaces de propulsarse usando campos electromagnéticos de distintas longitudes de onda sin necesidad de reactivos adicionales.

Se cultivaron 𝘣𝘪𝘰𝘧𝘪𝘭𝘮𝘴 en placas multipocillo a los que se añadieron las dispersiones de los distintos TMDs (sulfuros de wolframio y de molibdeno), y se utilizó una fuente de luz visible de alta intensidad (535 nm y 480 nm), para producir el movimiento del material y la producción de ROS por parte de este. Para evaluar la viabilidad del 𝘣𝘪𝘰𝘧𝘪𝘭𝘮 tras el tratamiento, se utilizó cristal violeta y se midió la densidad óptica, comparando los resultados con los pocillos de control positivo y con los blancos.

Los 𝘣𝘪𝘰𝘧𝘪𝘭𝘮𝘴 tratados con micromotores de sulfuro de molibdeno y con luz verde (535 nm) producían la muerte del 87% de las bacterias y los tratados con luz azul (480 nm) del 64%, mientras que en el caso del sulfuro de wolframio con luz verde se provocó la muerte del 40% y con luz azul del 32%. Por otra parte, se realizó un estudio de toxicidad cultivando un 𝘣𝘪𝘰𝘧𝘪𝘭𝘮 durante 24 horas en presencia de los dicalcogenuros. Se produjo la muerte de tan solo el 7% de las bacterias en el caso del sulfuro de molibdeno y del 6% en el del sulfuro de wolframio. Estos resultados ponen de manifiesto la efectividad de los micromotores en la eliminación efectiva de biopelículas de bacterias de forma rápida y efectiva.

  1. Zobell, C. E., & Anderson, D. Q. (1936). Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. The biological bulletin, 71(2), 324-342.
  2. Vickery, K., Pajkos, A., & Cossart, Y. (2004). Removal of biofilm from endoscopes: evaluation of detergent efficiency. American journal of infection control, 32(3), 170-176.
  3. Reffuveille, F., Josse, J., Vallé, Q., Gangloff, C. M., & Gangloff, S. C. (2017). Staphylococcus aureus Biofilms and their Impact on the Medical Field. The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus, (11), 187.
  4. Even, C., Marlière, C., Ghigo, J. M., Allain, J. M., Marcellan, A., & Raspaud, E. (2017). Recent advances in studying single bacteria and biofilm mechanics. Advances in colloid and interface science, 247, 573-588.

Cita: de-la-Asunción-Nadal V, Bujalance-Fernández J, Jurado-Sánchez B, Escarpa A (2021) Destrucción “on-the-fly” de biofilms bacterianos empleando micromotores de dicalcogenuros de metales de transición impulsados por luz visible. Actas del VI Congreso de Señalización Celular, SECUAH 2021. 29 de marzo a 30 de abril, 2021. Universidad de Alcalá. Alcalá de Henares, Madrid. España. dianas 10 (1): e202103c03. ISSN 1886-8746 (electronic) journal.dianas.e202103c03. URI http://hdl.handle.net/10017/15181

Copyright: ©2021 de-la-Asunción-Nadal V, Bujalance-Fernández J, Jurado-Sánchez B, Escarpa A. Some rights reserved. Este es un artículo open-access distribuido bajo los términos de una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. http://creativecommons.org/licenses/by-nc-nd/4.0/

Licencia de Creative Commons

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *